Based on my original post and the ongoing discussion I am formulating a GEP for Super Green Farming with 100% Renewable Energy.
Uptime Requirements
Since renewable energy is not available 100% of the time, lower uptime requirements are needed for 100% green farming. Based on my analysis the following uptimes could be realistically achieved:
- 90% Uptime using a combination of wind & solar power, or a combination of wind & backup batteries
Optional: Since wind power availability can fluctuate greatly for different months of the year, it could be considered to have uptime requirements be calculated on a yearly basis, instead of monthly basis. This way more windy months could potentially compensate for less windy months.
Minting Rewards
In order to incentivise farmers to use renewables to power their 3Nodes, minting rewards should be higher than for conventional farmers. This way the grid will eventually become more sustainable itself, as more farmers go green. I propose the following minting rewards:
- 125% for super green farmers on DIY hardware
- 150% for super green farmers on certified hardware
Suitable Workloads
Lower uptime requirements mean that those green servers are not very practical for use cases that require more or less constant availability (eg. hosting a website or running a gaming server). Instead I can imagine that those 3Nodes flagged as Super Green could be constrained to accept only certain workloads, including but not limited to:
- Backup & Archiving
- 2D/3D Rendering
- Machine Learning
- Other less time sensitive high performance computing tasks
Bandwidth Requirements
Without a constant uptime, and considering the suitable workloads, it may be necessary to send and receive larger amounts of data from and to the 3Nodes and in a higher frequency than usual. Therefore it may be beneficial to set higher bandwidth requirements for super green farmers. My proposal would be to:
- Increase bandwidth requirements by 25% compared to conventional 3Nodes
Use of cheap Excess Energy
Many times of the year (when it is very windy) more energy is being produced than the electricity grids can handle. Huge amounts of energy are being wasted this way. If super green nodes were able to let the grid know, that they currently have plenty of excess energy available, certain less time sensitive but power hungry workloads could be started. This would improve the grid both in an economical and a sustainable way.
Smart Contracts for IT
By using smart contracts on the TF Grid we could potentially make this entire thing even greater and more efficient. When a workload definition is sent out by a capacity consumer (user) the following things could optionally be specified:
- super_green: deploy workload on super green node(s)
- deadline: The grid will make sure that the task at hand will be completed by then (eg. rendering a 3D scene). Super green nodes (if available) can be preferred for being assigned the workload. If no super green nodes are available, conventional nodes may be used. If no deadline is specified, workload will not run until super green nodes are ready to process.
- only_excess_energy: If somebody wants to be as sustainable as possible, he or she could let the workload run only on excess energy that would have been wasted otherwise (may take a while until workload is handled).
contract = {
version: contractVersion,
contract_id: contractID
…
super_green: true, //run workload on super green nodes
deadline: “TimeStampOfDeadLine”, // workload must finish by this time,
only_excess_energy: false // if true, workload will only run on excess energy
}
All of this could be further enhanced by providing predictions about power availability of our 3Nodes to the TF grid. We are able to predict (to a certain degree) what our power production in the near future will be. This data could be valuable for the grid to decide how and when to run workloads or move them over to a different location (in case a power drop is expected soon). In the future it may also be thinkable to provide energy prices of our nodes to the grid. On the german energy exchange the price per kWh changes every hour, so it may be beneficial for users (and the environment) to have their workloads run when energy prices are lower (by giving them as small discount on their used capacity).
Proof of origin of electricity
In order to prevent farmers using conventional energy to power their super green nodes, and thus cheat the system, a proof of origin of electricity for super green farmers shall be required. As a green energy company we have all the necessary electric meters for this already in place. If required, a certified public accountant can confirm this for any farms joining the grid in the future.
VOTING
- OK with GEP for 100% Super Green Farming
- Not OK
0 voters